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Abstract

In this paper, we present the effectiveness of image com-

pression based on a convolutional auto encoder (CAE) with

region of interest (ROI) for quality control. We use road

images used to check damaged parts in the road. Our eval-

uation reveals that BPG does not provide adequate quality

for the road damaged parts at a low bit rate (1.0 bpp or

less). We propose a method that adapts image quality for

prioritized parts and non-prioritized parts for CAE-based

compression. The proposed method uses annotation infor-

mation for the distortion weights of the MS-SSIM-based

loss function. Experimental results show that the proposed

method implemented for CAE-based compression from F.

Mentzer et al. learns the characteristics of the road dam-

aged parts by end-to-end training with the weighted loss

function and reduces bpp by 31% compared to the original

method while meeting quality requirements that an average

weighted MS-SSIM for the road damaged parts be larger

than 0.97 and an average weighted MS-SSIM for the other

parts be larger than 0.95.

1. Introduction

Image data generated by digital devices is enormous and

is generated at every moment. To transfer and store this

increasing data, technology that provides a high compres-

sion ratio for the data is needed. In this paper, we present

the effectiveness of image compression based on a convo-

lutional auto encoder (CAE) with region of interest (ROI)

in a use case in which images taken by on-vehicle cameras

are used to check damaged regions on the roads for mainte-

nance work.

2. Related works

2.1. Convolutional autoencoder based image com­
pression

Leading research [4, 6, 7] has covered the compression

methods for images using neural networks. These methods

train a CAE with a large amount of training data. An image

compression technique using a neural network has the ad-

vantage that an arbitrary differentiable function can be set

as a loss function and a compressor is trained in an end-

to-end manner. In general, image quality measures such as

PSNR (a mean squared error based metric) and MS-SSIM

[9] (which qualifies structural similarities) are used as the

loss function. CAE-based image compression methods such

as [4, 6] automatically learn to adjust to the bit rate neces-

sary for each part by using a technique called an “impor-

tance map” with end-to-end learning.

Selective generative compression [1] generates portions

of images by a generative adversary network (GAN) to im-

prove a compression rate further. This method can dramat-

ically improve a compression rate up to 0.1 bpp or less in-

stead of storing the details of images. However, because our

purpose in this paper is to keep important details such as the

damaged parts of roads, the problem with this approach is

that it changes the shape and characteristics of the parts.

2.2. Other codecs

JPEG is an image compression codec that has been

widely used as a standard on the internet for decades. The

JPEG2000 image coding standard provides a feature called

region of interest (ROI) [3]. It changes the compression

rate and the quality for each area so that areas specified as

important have high quality. This approach is similar to our

approach. However, our approach differs in that the encoder

and decoder automatically learns the features of the impor-

q = 32
(bpp: 1.164)

q = 36
(bpp: 0.754)

q = 40
(bpp: 0.457)

q = 44
(bpp: 0.255)

Figure 1. Road damage images at different qualities encoded by

BPG (using Adachi 20170906093840 [5]).
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Figure 2. Network Architecture Overview.

tant part in the end-to-end manner from the training data

with annotation.

BPG [2] is one of the latest image compression codecs,

based on a subset of the HEVC open video compression

standard. These methods are designed to be general purpose

and are often evaluated by the PSNR as a benchmark.

Figure 1 shows road damage images encoded by BPG at

different qualities. We found that the details of the damaged

parts disappear at a low bit rate of 1.0 bpp or less.

In this paper, we examined the effectiveness of applying

the state-of-the-art CAE-based image compression method

with ROI to the road images. We assumed that end-to-end

learning gives the CAE-based methods better compression

rates compared to conventional methods.

3. Proposed method

Assuming that there are important and unimportant parts

in the image, we aim to control the allocation of the amount

of bits according to the specified image quality for priori-

tized and non-prioritized parts. Our method adds the fol-

lowing steps to the CAE-based image compression method.

1. Use a loss function that changes parameters of an im-

age quality metric for each area according to the anno-

tation information.

2. Append a new encoder input channel and feed it an-

notation information for manual quality control (op-

tional).

3.1. Network architecture

We employ [6] as the network architecture of the com-

pressor. Figure 2 shows the entire architecture overview.

The annotation information A is a two-dimensional array

(W × H) of values representing the degree of importance

of each pixel on the image. A is use for calculating dis-

tortion weights of our MS-SSIM-based loss function during

network training. A is optionally used as encoder input for

manual quality control during and after the network train-

ing.

If we use the annotation information A as encoder input,

A is input into 1 out of 4 channels of the encoder. Image

data in RGB format (3 × W × H) is input into 3 out of 4

channels of the encoder.

3.2. Loss function

We defined weighted MS-SSIM (wSSIM), image quality

metrics that reflect annotation information. They are used to

evaluate image quality and loss function for quality control

in this paper.

3.2.1 Weighted MS-SSIM

SSIM is an image quality metric that takes structural sim-

ilarity for good approximation of perceived image quality,

and multi-scale SSIM (MS-SSIM) is a multi-scale extension

of SSIM [9].

Let xj,i and yj,i be the ith local image patches at the

jth scale, let ai,j be the ith local annotation weight at the

jth scale, let M be the number of scales, let βj be the scale

weight at the jth scale, let ssim be the local SSIM met-

ric function, and let cs be the local contrast and structure

metric function, then the weighted MS-SSIM (wSSIM ) is

computed as

wSSIM = [

∑
i ai,Mssim(xi,M ,yi,M )∑

i ai,M
]βM

M−1∏

j=1

[

∑
i ai,jcs(xi,j ,yi,j)∑

i ai,j
]βj . (1)

In MS-SSIM calculation, the images are subsampled to

each scale and Gaussian filtering is performed to the im-

ages for the local ssim and cs calculation. Our method also

performs the same process for the annotation information A

to calculate ai,j to realize the natural image quality change

at the boundaries between the priority parts and the other

parts. Let Aj be the subsampled A for each scale j (note

that A = A1), and let ai,j be the local annotation patches

from Aj , then we get ai,j by performing Gaussian filter to

ai,j .

By taking a weighted average using scaled annotation

weights ai,j for each scale to the MS-SSIM, the image qual-

ity metrics reflect the importance of each part.

We referred to paper [8] that uses information content

weight with MS-SSIM. Our approach is different in that we

use specified external annotation information for weight.

3.2.2 Quality control loss function

In order to optimize the rate-distortion trade-off in im-

age compression by end-to-end learning, the following loss

function is generally used as in CAE-based compression

[4, 6, 7].

L = Le + λLd (2)
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Le represents the information entropy that corresponds

to bpp. Le is calculated by an entropy estimator based on

CNN (see [6] for details). λ is a parameter that determines

the desired rate-distortion trade-off. Ld is a distortion term

that qualifies an image quality. Ld is defined by the follow-

ing equation in our method.

Ld = max(1− wSSIMp, Tp)

+max(1− wSSIMnp, Tnp) (3)

wSSIMp and wSSIMnp represent prioritized parts and

non-prioritized parts of image quality calculated by Eqn 1.

Target distortion of priority parts Tp and non-priority parts

Tnp are given by quality settings. In our experiment, A has

a constant positive value c for the priority area and 0 for

the non-priority area. wSSIMp is calculated with A, and

wSSIMnp is calculated with the inverse of A. However,

if a priority or non-priority area does not exist, wSSIM

cannot be calculated because
∑

i ai,j equals 0. To avoid

this problem, a sufficiently small coefficient is added to A

during training.

4. Experiments

We evaluated the effectiveness of our method with the

RoadDamageDataset [5], which is a dataset of images that

contain damaged parts of a road.

4.1. Experimental conditions

The RoadDamageDataset contains annotation informa-

tion and image data, which are downsampled to 256 x 256

pixels in this evaluation. For details on the network archi-

tecture and implementation that our method employs as a

base, refer to paper [6]. The settings of this experiment are

summarized in Table 1. We set the chroma format to 4:4:4

when evaluating BPG.

4.2. Results

The experimental results are shown in Figure 3 (a)-(g).

In the conventional codecs like JPEG (b) and BPG (c), the

damaged portion of the road on the lower left disappears.

With the CAE-based compression [6] trained by our meth-

ods ((d) and (e)), the portion has a higher quality compared

to the conventional method under the same level bpp con-

ditions. Compared to method [6] without our methods (f)

and BPG (g) with same level quality conditions of the pri-

oritized portion, our methods ((d) and (e)) reduces bpp.

Table 2 shows the results of the average bpp of test im-

age data under the same quality level conditions in the pri-

ority parts (wSSIMp). In Table 2, the bpps are theoretical

value calculated by the entropy estimator. Note that the the-

oretical values include small errors that are less than 0.1%

in most image data compared to actual values. Compared

Items Conditions

Base model [6]

Encoder and Decoder:

3 Layer 2DCNN

+ 15 Residual blocks

Entropy Estimator:

2 Layer 3DCNN (masked)

+ 1 Residual block

Training iteration 100,000 iterations of batches

Train data
6,925 files from [5]

(Width:256, Height:256)

Test data

1,811 files from [5]

(exclude images with no

damaged parts)

(Width:256, Height:256)

Quality settings
Tp = 0.03 (wSSIMp = 0.97),

Tnp = 0.05 (wSSIMnp = 0.95)

Table 1. Experimental conditions.

Method bpp wSSIMp wSSIMnp

Proposal train

(w input A)
0.251 0.970 (26.78) 0.952 (22.06)

Proposal train

(w/o input A)
0.263 0.970 (27.04) 0.953 (21.98)

Normal train 0.382 0.970 (27.81) 0.973 (23.55)

BPG (q = 32) 1.183 0.970 (32.93) 0.985 (33.39)

Table 2. Experimental results (averages of test data; PSNR in

parentheses).

to the method [6] without the proposed method (normal

train), the method [6] with the proposed method reduces

the amount of data by 31% on average even without receiv-

ing the annotation as the encoder input while the wSSIMs

in the damaged parts are on the same level. The proposed

method with the annotation input for the encoder reduces

the amount of data by 34% on average.

4.3. Annotation effects

Figures 4 (a)–(c) show visualized importance maps of

the reference image, in which the black parts represent

larger amount of bits. (a) is an importance map without

a proposal method. (b) is an importance map when the net-

work is trained by the proposed loss function without re-

ceiving the annotation as the encoder input. (c) is an im-

portance map with the proposed method with the encoder

annotation input. (d) is the annotation of the image where

black represents priority parts. Compared to (a), (b) show

that the damaged parts have a lot of bit allocation and the

parts without damage are do not. This means that by the

proposed method, the network learns the characteristics of

the damaged parts and it realizes automatic control of pri-

oritized bit allocation. (c) show a stronger correlation with
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(a) PNG (ground truth) (b) JPEG (q = 6)
bpp: 0.280

wSSIMp: 0.808 (26.02)

wSSIMnp: 0.898 (21.96)

(c) BPG (4:4:4, q = 43)
bpp: 0.291

wSSIMp: 0.845 (27.56)

wSSIMnp: 0.943 (25.34)

(d) Proposal train with [6]

(w/o input A)
bpp: 0.263

wSSIMp: 0.976 (27.20)

wSSIMnp: 0.957 (21.35)

(e) Proposal train with [6]

(w input A)
bpp: 0.252

wSSIMp: 0.976 (27.42)

wSSIMnp: 0.956 (21.31)

(f) Normal MS-SSIM train

with [6]
bpp: 0.384

wSSIMp: 0.971 (27.97)

wSSIMnp: 0.975 (22.89)

(g) BPG (4:4:4, q = 31)
bpp: 1.286

wSSIMp: 0.971 (34.02)

wSSIMnp: 0.986 (34.39)

Figure 3. Experimental results. (using Adachi 20170906093840, PSNR in parentheses).

(a) (b) (c) (d)

Figure 4. Importance maps and an annotation information (using

Adachi 20170906093840).

the input annotation, which indicates that more specific bit

allocation with manually annotation input.

5. Conclusion

We evaluated image compression methods using images

of roads that had damaged parts. The results revealed that

the image quality and compression rate of the damaged

parts improved by neural network-based compression tech-

niques that use MS-SSIM as a loss function over the con-

ventional image compression (BPG).

We proposed a method to improve the compression rate

while maintaining the given quality of the parts using an-

notation information that expresses the importance of each

part of the image.

Combining our method with CAE-based compression

[6] learns the characteristics of the road damaged parts by

end-to-end training with the weighted loss function and re-

duces bpp by 31% compared to the original method [6]

while maintaining the predetermined image quality in the

parts.
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